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contact surface, the maximum bulge depth and the highest strain were determined following
the formation of geomembrane bulge under various normal pressures. Moreover, ultrahigh
strain, but not fracture, developed on the geomembrane during the experiment. Based on air
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This study investigates the bulge deformation mechanics of geomembranes that are interacting
with non-fine concrete cushions. We conducted 3D scanning of non-fine concrete specimens
and further analyzed the depth-to-width ratios for non-fine concrete specimen surfaces. Then,
stress distribution characteristics between the geomembrane and the non-fine concrete

KEYWORDS contact surface under diverse normal pressures were measured using a thin-film pressure

transducer. It was observed that the contact surface between the geomembrane and the non-
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contact surface, the maximum bulge depth and the highest strain were determined following
the formation of geomembrane bulge under various normal pressures. Moreover, ultrahigh
strain, but not fracture, developed on the geomembrane during the experiment. Based on air
bulking tests, it was demonstrated that the geomembrane had enormously high yield strength,
which plays a critical role in the improvement of both the safety and the reliability of
geomembranes that are mounted on non-fine concrete cushions.

Thin-film pressure transducer
Bulge deformation

1. Introduction

Geomembranes are anti-seepage materials that can be installed,
repaired, and replaced in a simple and convenient manner;
materials of this type have high impermeability, high mass
uniformity of materials, high deformation adaptive capability,
and high environmental adaptive ability. They are being increasingly
utilized in water conservation project. Whitfield (1996), Thomas
and Koerer (1996), Scuero and Vaschetti (2008) and Poulain et
al. (2011) have carried out a lot of anti-seepage geomembranes
research and established some guidelines for geomembrane anti-
seepage system. International Commission on Large Dams's
(2010) report has shown that high geomembrane-faced rockfill
dams use geomembranes as their main type of anti-seepage
structure. Furthermore, anti-seepage geomembranes and cushions
are substantial parts of the major seepage prevention structure
that is used for high geomembrane-faced rockfill dams. Dickinson
and Brachman (2008), Gudina and Brachman (2006) have

studied the clay cushions for Landfills. However, the cushions
that are required for the geotechnical membranes in high dam
projects differ from those of other projects. For high dams, the
cushions require sufficient strength for resisting water pressure
and a large penetration coefficient to reduce the water penetration
through the geomembrane, as the water will substantially reduce the
coefficient of friction between the geomembrane and the
cushions. Ministry of the Environment (1998) pointed out that in
a seepage prevention structure, the geomembrane is mounted
above a cushion and a drainage layer that is formed by granular
materials. Ning et al. (2016) shows The cushions that are
commonly used in high geomembrane-faced rockfill dams
primarily include non-fine concrete and crushed concrete-type
sidewalls. The aggregates of granular cushions with rough or
even concave-convex surfaces are exposed due to watery cement
grout on their surfaces. In addition to being burst or punctured,
such a geomembrane may be squeezed into a sag of non-fine
concrete when subjected to high hydraulic pressure, thereby

CORRESPONDENCE Ke Cu guke1224@hotmail.com ET College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China

© 2020 Korean Society of Civil Engineers
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resulting in bulge damage. Hence, it is extremely important to
investigate the bulge deformation of the upper geomembrane of
the non-fine concrete cushion in a geomembrane-faced rockfill
dam. In terms of bursting studies, Gudina and Brachman (2006)
covered a high-density polyethylene (HDPE) geomembrane with
a maximum thickness of 1.5 mm with coarse gravels under
3,000 kPa. Their experimental results demonstrated that the
geomembrane could be punctured under this extreme condition.
Brachman and Sabir (2010) placed the gravel between the
geomembrane and the clay cushion underneath it. Although the
geomembrane was not punctured, potential puncture points were
discovered during an experiment that was investigating the
contact apex between the gravel and the geomembrane. Koerner
et al. (1996), Narejo et al. (1996), Wilson-Fahmy et al. (1996), and
Stark et al. (2008) studied geomembrane punctures using 3
theoretical experimental examples. Three 250-mm-spaced truncated
cones were placed in a pressure vessel for standard tests to
evaluate the puncture resistance of the geomembrane. The puncture
test results demonstrated that the geomembrane exhibited puncture
resistance in extreme clearing conditions. Bulge deformation
analysis of geomembranes differs from puncture testing. The
basis for bulge research is a biaxial tension test for materials. A
material liquid expansion test is utilized for bulge exploration.
Ren et al. (2001) developed and used mechanical bidirectional
tensile experimental equipment to study traditional materials and
explain the results of their experiment using the anisotropic form
of Hooke's law. Bray and Merry (1999) used the spherical
continuity hypothesis, deduced the stress-strain curve of the gas
expansion test; the results demonstrated that the measured elastic
modulus under a small strain was less than the theoretical value.
Andrejack and Wartman (2010) conducted a large-scale gas
expansion test; they placed geomembranes under geotextiles,
which acted as pressure carriers, to study the failure process of
biaxial tension. Ognedal et al. (2012) employed mechanical
biaxial tension to study the mechanical properties of HDPE and
polyvinyl chloride (PVC) geomembranes. Their experiment
utilized a hyperelastic-viscoplastic constitutive model that satistied
the Raghava yield criterion. Jiang et al. (2013) and Jiang and Shu
(2014) used the entropy principle to derive the relationship
between pebble particle size and touch. Jiang and Tian (2018)
used image recognition to measure sizes and depths in granular
cushions and use finite elements to calculate the deformation of
the geomembrane. Since numerous pores of various sizes and
depths are present in granular cushion materials, the granular
cushion bulge conditions differ across the impervious structure
surface. The bulge deformation conditions differ among granular
cushions; even within the same cushion, the bulge deformation
depends on the position. It is necessary to understand the effects
of various depression slots on the geomembrane. The experimental

Table 2. Non-Fine Concrete Composition

steps that were conducted are summarized as follows: First, 3D
scanning was performed on the non-fine concrete to determine
the sag conditions on its surface and to analyze the depth-to-
width ratios of the surface. Second, a thin-film pressure transducer
was utilized to measure the stress distribution on the contact
surface between the non-fine concrete and the geomembrane
under the influence of various amounts of hydraulic pressure.
Ultimately, the stress-strain relationship after the bulge had
formed was determined for various hydraulic pressure conditions
by combining the sag distribution on the specimen surface and
the stress distribution on the contact surface.

2. Key Properties of Non-Fine Concrete Cushions

Due to the uncertainties of non-fine concrete aggregate sources
in the practical engineering of crushed stone aggregate (basalt in
lithology), aggregate that was the least beneficial in terms of the
geomembrane contact safety conditions was selected in this
study. The particle diameter of the non-fine concrete aggregate
that was used as the test block ranged from 5 — 10 mm. Moreover,
the aggregate was measured by referring to the JGJ52-2006
(2006). The gravel that was used in the experiment is shown in
Fig. 1. The corresponding results are presented in Table 1. This
study uses 4 samples.

The non-fine concrete compositions that are commonly used
in high dam projects are presented in Table 2. The concrete
pouring and maintenance process follows GB 50164-2011
(2011). Considering the precise requirements of the impervious
geomembrane structure, water that has accumulated underneath

Table 1. Material Parameters of the Coarse Aggregate

Porosity
43.53%

Specific surface area Shape factor

Aggregate 274.49 177

Fig. 1. Non-Fine Concrete Aggregate

Cement Sand Crushed stone

Sand coarse aggregate ratio

Water-cement ratio  Accelerator Porosity

Non-fine concrete 378 kg/m*  Okg/m® 1,536 kg/m’ 0%

0.299 0.06 20%
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Table 3. Main Properties of the Non-Fine Concrete Cushion

Compressive strength Bending strength

Permeability coefficient

Angle of static friction  Initial cohesive force

Non-fine concrete 12.3 MPa 3.3 MPa

1 cm/s 32~

1.786 kPa

the geomembrane should be rapidly discharged from the cushion
to maintain the stability of this structure. Therefore, the sand-
coarse aggregate ratio was 0 and the water-cement ratio was set
to a low value in this study to substantially improve the
permeability coefficient of the non-fine concrete. The cast test
block underwent 30 s of mechanical jolt ramming. The measured
porosity of the specimen was 20%.

The major properties of the non-fine concrete test block are
listed in Table 3. Measures that were taken to enhance the
permeability coefficient of the non-fine concrete also resulted in
substantial declines in the compressive and bending strengths.

3. Testing Equipment and Methods

Bulge deformation on the surface of non-fine concrete test blocks
is closely related to the hydraulic pressure, the geomembrane
thickness, the sag dimensions (depth and width), the distribution
of the test block, and the stress distribution on the contact
surface. In this study, data that were obtained from a 3D range
scanner and a thin-film pressure transducer were used to conduct
an in-depth analysis of these factors.

3.1 3D Range Scanner

Three-dimensional scanning images of the specimen are presented

(a) (b)
Fig. 2. Three-Dimensional (3D) Scanning: (a) Specimens, (b) Scanning
Process

in Fig. 2. The vertical measurement accuracy and the horizontal
measurement interval of the 3D scanner were 0.01 mm and 0.03 mm,
respectively. The non-fine concrete test block had an area of 200
mm * 200 mm. Fig. 3 presents the distribution of the sags on the
specimen surface. In this figure, regions are colored according to
depth. The unit of measure in this figure, is millimeters.

3.2 Thin-Film Pressure Transducer

A thin-film pressure transducer is a novel plane stress measuring
device. Stress that is distributed on the contact surface can be
directly measured by a thin-film pressure transducer that has

Fig. 3. Specimen Sags

Fig. 4. Thin-Film Pressure Transducer

tensions that are nearly identical in all directions.

Liquid soft silicon cushion
Silicon protective layer

loading plate
geomembrane

thin film pressure transducer

non-fine concrete cushion

waterproof bag full of liquid soft silicon

Fig. 5. The Arrangement for the Contact Surface Stress Measurement
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been placed between the geomembrane and the non-fine
concrete. As shown in Fig. 4, the sensing zone of the transducer
was 255 mm long and 210 mm wide; its sensing accuracy was
95%.

The arrangement for the contact surface stress measurement is
presented in Fig. 3. The arrangement included a loading plate, an
liquid soft silicon cushion, a silicon protective layer, a 2-mm-
thick geomembrane, a thin-film pressure transducer, and a non-
fine concrete cushion. The liquid soft silicon is stuffed in a red
waterproof bag. The function of the liquid soft silicon cushion
was to convert the vertical pressure that was exerted by the rigid
loading plate to tensions that are nearly identical in all directions.

The geomembrane thickness in large-scale dam engineering
is often more than 2 mm. The thicker the geomembrane, the
more adapted it is to bulge deformation. This study focused on a
thickness of 2 mm.

The test temperature and humidity were controlled to 20 =
2°C and 50 = 2%, respectively. After the test began and before
the data were collected from the transducer, the testing equipment
was held steady so that the stress distribution on the contact
surface was constant.

4. Probability Distribution of Non-Fine Concrete
Sags

4.1 Probability Distribution Function of the Absolute
Depth

As demonstrated by the 3D scanning data of the non-fine
concrete test block, the maximum surface depth of the test block
was 10 mm. In addition, the maximum sag depth of the test
block was found to be identical to the maximum particle size of
the aggregate; the extreme sag depth of the former depends on
the largest particle size of the latter. The proportions of the
diverse sag depth are listed in Table 4.

Probability

Sag Depth

Fig. 6. Sag Depth and Probability Density Function

Table 4. Proportions for Various Sag Depths

Table 5. Parameters of Eq. (1)
Parameter ¢ o u
Value 0.1878 1.1747 1.5652

The average sag depth of the non-fine concrete was 2.48 mm
and 89% of its area had a sag depth < 5 mm. The sag depth of the
non-fine concrete conformed to the GEV distribution. For the
probability density function after fitting, please refer to Fig. 6.

In Fig. 6, the x-axis represents the sag depth and the y-axis
represents the density of these depth values. The curves are GEV
curves after fitting and the relevant data preferably fit the curves.
The GEV distribution functions are expressed in Egs. (1) and (2).

J,S?&O (M

TH, £=0 @)

In Egs. (1) and (2), i, o, and ¢ are location, scale, and shape
parameters, respectively. Among them, & denotes the distribution
function form. If & = 0, Eq. (2) describes a type-I (Gumbel)
distribution; if £ <0, Eq. (1) refers to a type-II (Frechet) distribution;
and if £is > 0, Eq. (1) refers to a type-IIT (Weibull) distribution.
The probability density function parameters of the GEV distribution
fitting are presented in Table 5.

The full form of GEV distribution is expressed in Eq. (3). Eq.
(3) is a Weibull distribution.

1
x-1.5652 -~
{-[1+0.1878 01878 )
-l a7 I 3)

Fuy=e

Use the Kolmogorov-Smirnov test to verify the sag depth data
and gev distribution, the returned value indicates that Kolmogorov-
Smimov test does not reject the null hypothesis at the 5%
significance level. p value is 0.2753, that shows the measured
data and the probability density function have goodness-of-fit.

4.2 Probability Distribution Function
of the Depth-to-Width Ratio

The region with the highest depth-to-width ratio is the most
dangerous section of non-fine concrete. In typical cases, the
region with the maximum depth-to-width ratio does not have the
maximum depth value. For the depth-to-width ratio probability
distribution of the non-fine concrete test block, please refer to
Table 6.

The average depth-to-width ratio of the non-fine concrete was
found to be 0.9 mm. The areal proportion of regions with a
depth-to-width ratio of < 1 was 73.5%; 8.8% had a ratio of > 4.
The maximum depth-to-width ratio was 7.21.

Sag (mm) 0—-1 1-2 2-3 3-4

4-5 5-6 6-7 7-8 8-9 9-10

Probability (%) 22.18 26.84 19.49 13.48

411 5.15 2.82 2.08 0.37 0.49
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Table 6. Depth-to-Width Ratio Probability Distribution

Value —7t0—5 =5 to.—3 =8, to:—1 —1tol 1to3 3t05 S5to7
Ratio (%) 245 3.68 9.08 57.30 18.28 4.05 4.42
0.6 Table 7. Parameters of Egs. (4) and (5)
s v Measured Parameter ot B Y é
o Stable Value 1.1638 0.02869 0.5145 0.0211

Distribution

Probability
<
w

4 6 4 -2 0 2 4 6 8
Depth-to-width Ratios
Fig. 7. Depth-to-Width Distribution of a Specimen

By fitting experimental data, the depth-to-width ratios conform
to an a-stable distribution. The probability density function after
fitting is plotted in Fig. 7. As a more generalized normal
distribution, the a-stable distribution represents a major category
of broadly representative random distribution models. The depth-to-
width distribution was consistent with the a-stable distribution,
thereby demonstrating that instead of being completely disordered,
the depth-to-width ratios of non-fine concrete follow various
physical laws.

In Fig. 7, the x- and y-axes represent the depth-to-width ratios
and their densities, respectively. The a-stable distribution curves
after fitting are plotted in red. The fitting between the relevant
data and the curves is satisfactory.

Although there is no unified closed expression for an a-stable
distribution probability density function, its characteristic function,
as expressed in Egs. (4) and (), has a uniform form. Thus, a
numerical expression of the probability distribution function can
be obtained using such a characteristic function.

o ]

p(t)=e 4)

1-ifsgn(?) tan(’;—“), a#l

’ (5)

, a=1

l+iﬂsgn(t)%lgt

where o is a characteristic index that is used to control the pulse
conditions of a stochastic process. If a = 2, the a-stable distribution
corresponds to a Gaussian distribution; if @ = 1 and f = 0, it
corresponds to a Cauchy distribution. Additionally, y is a scale
parameter, and f is a symmetrical parameter that determines the
distribution gradient. /= 0 represents a symmetrical distribution.
The conditions a # 1 and >0 and £ < 0 correspond to distributions
that are inclined to the right and to the left, respectively. J is a
location parameter, which can be any real number, that corresponds
to the mean value and the mid-value of the stable distribution.

The probability density function parameters of the a-stable
distribution fitting are listed in Table 7.

Use the Kolmogorov-Smirnov test to verify the Depth-to-
width data and a-stable distribution. The returned value indicates
that Kolmogorov-Smirnov test does not reject the null hypothesis
at the 5% significance level. p value is 0.559, that shows the
measured data and the probability density function have goodness-
of-fit.

5. Contact Stress Distributions of Geomembranes
and Non-Fine Concrete under Various Normal
Pressures

The upward pressure values for the stress distribution measurement
test were 142 kPa, 194 kPa, 245 kPa, and 297 kPa, which were
converted to 14.2 m, 19.4 m, 24.5 m, and 29.7 m below the water
head. The corresponding ratios of the water head to the contact
area are presented in Table 8. In these locations, the contact areas
between the geomembrane and the non-concrete test block were
73.39%, 84.67%, 93.61%, and 97.68%, respectively. The
geomembrane was in almost full contact with the cushion 30 m
below the water head.

Figures § plot the stress distributions on the contact surface
between the geomembrane and the non-fine concrete test block.
The unit of measure in these figures is MPa. Here, the yellow
areas represent high stress, and high stress probabilities correspond
to the rightmost probability values.

The stress values of the stress regions are presented in Tables
9 and 10. The area of the high stress region increases with the
normal pressure, as does its probability. Regarding other stress
values, the corresponding area probabilities decrease continuously.
Additionally, as the normal pressure increases, the area probabilities
of regions that have low stress values approach one another.

According to these figures, when the water head continuously
increases, the stress area on the contact surface also increases,
while the area of the regions that are free from stress continually
shrinks. Regions of high-pressure account for most of the total
contact area. Subsequent to the increase in the water head, the
area of the high-stress region expands continuously. In addition,

Table 8. Ratio of the Water Head to the Contact Area
24.5
93.61

Water head (m) 14.2 19.4
73.39 84.67

29.7
97.68

Contact ratio (%)
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Fig. 8. Stress Distribution on the Geomembrane-Cushion Contact Area 14.2, 19.4, 24.5 and 29.7 m below the Water Head: (a) Nephogram, (b)

Statistics

Table 9. Proportion of the Total Surface Area of the High-Stress Region

Table 11, Bulge Deformations of Four Water Heads

Water head (m) 14.2 19.4 24.5 29.7 Water head (m) 14.2 19.4 24.5 29.7

High-stress contact ratio (%)  39.75  45.01 50.24 54.81 Bulge deformation (mm) 4.23 6.3 7.52 8.25

Table 10. Stress Extremes of Four Water Heads

Water head () 142 194 245 207 displayed for con@ct areas, apfi 0 was displayed for cases of no
- contact. The peripheral positions of contact areas that were

T o PO O o B ok 0.113 0114 subjected to various water heads were obtained from the stress

Maximum stress (MPa) ~ 0.397 0.418 0.432 0.437 transducer. The maximum depths of their contact edges were

the maximum and minimum stress values increase by no more
than 10%. As the normal pressure is increased, both the contact
area and the area of the high stress region expand accordingly.

6. Bulge Deformation of Geomembranes

6.1 Specimen Bulge Depth Based on the Stress
Distribution

Free from exogenic actions, the contact between a geomembrane
that is mounted on the uneven surface of non-fine concrete and
concrete is confined to several small areas. Geomembrane bulge
develops as the hydraulic pressure increases. As discyssed above,
bulge deformation is associated with the hydraulic pressure and the
geomembrane thickness, along with the test block’s sag dimensions
(depth and width) and distribution.

According to the data that were collected by the pressure
transducer, the geomembrane was almost entirely in contact with
the specimen at 29.7 m below the water head.

The sag depth of the geomembrane when it was squeezed
under the action of normal pressure and the stress of the
geomembrane, together with 3D sag of the non-fine concrete,
was analyzed. The pressure data that were generated after the
geomembrane came into contact with the non-fine concrete were
collected using a stress transducer. Numerical values were

also calculated by comparing the 3D data of the non-fine
concrete surface. The measured top bulge deformation data are
listed in Table 11.

6.2 Strain Laws after Specimen Bulge
A non-concrete sag with the maximum depth-to-width ratio
corresponds to a geomembrane bulge deformation with the
maximum strain capacity. In locations 30 m below the water
head, the geomembrane is in almost full contact with the non-
fine concrete. Moreover, the geomembrane strain depends entirely
on the depth-to-width ratio of the non-fine concrete.

A 3D depth calculation was conducted for all regions that
corresponded to nonzero stress values to acquire the maximum

Deformed

<\ , " specimen
Depth — ;

Sideb =

Width

Fig. 9. Schematic Diagram for Calculating Geomembrane Bulge Depths
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Table 12. Strains of Four Water Heads

Water head (m) 14.2 19.4
Strain (%) 334 537 628 628

(a) (b)

Fig. 10. Ultimate Geomembrane Deformation: (a) Calibration, (b)
Deformation Additional Changes

depth-to-width ratio of the contact surface. The strain data that
were converted based on Fig. 9 are listed in Table 12. The
uniaxial strain of the geomembrane was determined to far exceed
the ultimate strain that the PVC geomembrane could bear. Apparent
stretching traces were identified on the PVC geomembrane after
the stress distribution measurement test equipment had been
uninstalled, although no damage occurred.

The strain data that were converted based on Fig. 9 are listed
in Table 12.

Since the linear strain of an unbroken PVC geomembrane
substantially exceeds its unidirectional tensile strain after a non-
fine concrete bulge, air bulking tests were conducted on the PVC
geomembrane to explore its ultimate bulge scenario. The
geomembrane bulge test is similar to the geomembrane sag
bulge test. To determine the strain limits of the geomembrane in
the context of ultimate destruction, an image analysis method
was utilized for the geomembrane specimen to gather and
analyze relevant geomembrane specimen images at the time of
its ultimate failure. The captured image is shown in Fig. 10.

According to Fig. 10, the two-way stretch limit strain of the
PVC earthen isometric membrane is more than 400%, which
does not satisfy the requirements on the mat; hence, the specimen
ultimately was not destroyed. This is due to the differerice in the
deformation of the soil membrane between sides a and b. The
thicker the soil membrane, the larger the strain difference
between a and b changes after deformation. At a thickness of 2
mm, the b-side strain difference ensures that the final strain on
the a-side does not exceed 400%.

Due to the tremendously high residual strain after beginning
to yield, a 2-mm-thick geomembrane that is placed on non-fine
concrete with aggregate (particle size: 5 —10 mm) and a high
water head remains stable subsequent to yield deformation if
supported by a sag wall. As its deformation ceases, such a
geomembrane can still realize its seepage prevention function.
However, the aging issues that are caused by large strain require

in-depth research.

7. Conclusions i

In this work, laboratory experiments were conducted to investigate

the bulge deformation of an anti-seepage geomembrane. The

main findings of this study are summarized as follows:

1. In this paper, a new method for determining the thickness of a
geomembrane is proposed. This method is suitable for dams
of various mat materials and heights. This method does not
impose any assumptions, in contrast to the traditional method.

2. The sag distribution on the non-fine concrete surface

preferably coincides with the GEV function, and its depth-
to-width distribution satisfactorily conforms to an a-stable
distribution. The statistical results demonstrated that the
surface depth-to-width ratios are distributed according to
physical laws.

- According to the data that were measured by the thin-film
pressure transducer, the contact area between the
geomembrane and the non-fine concrete increases with the
normal pressure, and the geomembrane is squeezed into the
non-fine concrete sags as it bulges. In this case, both the
area and the proportion of the high stress region continually
increase, despite an unsubstantial stress growth rate.

4. The sags and the depth-to-width ratio distribution of non-
fine concrete can be combined with the stress distribution
on the contact surface to calculate the maximum bulge
depth after geomembrane bulges have formed in the
presence of diverse water heads, which can be used to
determine the maximum strain of a geomembrane zone
with the maximum depth-to-width ratio.

5.1f a geomembrane zone with a large depth-to-width ratio
was not damaged during the test, it was proven through air
bulking experiments that the geomembrane yielded but still
had an extremely high deformation allowance. Supported
by the sag wall, the deformation of a geomembrane with a
residual strain is stable. In this context, the geomembrane
can still realize its seepage prevention function. However,
the aging problems that are caused by residual strain merit
further investigation.
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